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Introduction

In [1], the authors proposed an interesting approach to
describing the interaction of cracks in an elastic-brittle
medium, which is based on the use of the Selkov’s nonlinear
dynamic system, which is investigated within the framework of
the theory of biological systems [2].

The Selkov dynamic system [1], according to the authors,
describes well the interaction of two types of cracks: the first
type is seed cracks with a lower energy, which, when the
critical level of their concentration is reached, transforms into
the second type of cracks with a higher energy. Cracks of the
second type are a source of microseismic phenomena
(vibrations) and after the release of their energy, they partially
pass into seed cracks. Further, this self-oscillatory process is
repeated.
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Introduction

In the work of the authors [3], the generalized dynamic system
of Selkov was considered, taking into account heredity
(heredity), which is studied within the framework of hereditary
mechanics [4,5]. This model takes into account the property of
a dynamic system to remember the impact on it for some time.
Accounting for the heredity of the system is determined using
derived fractional orders in the sense of Gerasimov-Caputo. In
[3], using the numerical method of Adams-Buschfort-Multon,
the calculated curves were constructed and the rest points of
the fractional Sel'kov system were investigated.

In this paper, we consider the dynamic modes of the Sel'kov
fractional system by constructing the maximum Lyapunov
exponents.
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Basic concepts and definitions

Definition 1. A Sel’kov fractional dynamical system is a
system of the form:

bix (t) = —x (t) + ay (t) + bx*(t) y (),
by (t) = v —ay (t) — bx*(t) y (t), (1)
x (0) = %,y (0) = yo

where x (t) is a function that determines the concentration of
seed cracks of the first type; y (t) is a function that determines
the concentration of cracks of the second type that generate
microseisms, t € [0, T] is a coordinate that is responsible for
the current process time, T > 0 is a constant, modeling time;
Xo, Yo, V, @, b - given positive constants; operators of fractional
differentiation are understood in the sense of
Gerasimov-Caputo of orders 0 < a1, a» < 1 and are defined:
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1 [ x(n)dy
0t (t) r(l_al)/(t_n)alv
1 [y
(0] 3 (t) r(l—@z)/(t—n)oQ’

properties that can be found in the monographs [6]-[8].
Consider a more general fractional non-autonomous dynamical
system:
ocx (8) = A (x(t),y (1), 1),
ocy (1) = 2 (x(t),y (1), t), (2)
x(0) = xo,y (0) = yo.
where the functions f; (x (t),y (t),t) and f (x(t),y(t),t)

possess the necessary smoothness properties for the existence
of the first partial derivatives.
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Definition 2. The system of equations in variations for the
fractional dynamical system (2) is the following system of the
form:

L (x,y,t) N Ayafl (x,y,t)

Ot B (1) = Bx 5
of: t of; t
angy(t):Ax 2(;)7()/7 )+Ay 2((;(;/.)/7 )7

Remark 1. For the Sel'kov fractional dynamical system (1),
the variational equations, according to (3), will have the form:

{ O Ax (t) = (2bx (t) y (t) = 1) Ax + (a+ bx® (1)) Ay,
Og2Ay (t) = —2bx (t) y (t) Ax — (a+ bx*(t)) Ay. W
4

The system of equations in variations (3) for the original
dynamical system (1) is key in constructing the maximum
Lyapunov exponents. These equations describe the evolution
of an infinitesimal perturbation of the phase trajectory of the
original dynamical system.
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Algorithm for constructing the maximum Lyapunov

exponents

1. We choose the starting point - the initial vector xg and
together with it we will track the K perturbed
trajectories. In our case, K = 2.

2. We solve numerically, for example, by the
Adams-Bashfort-Multon method [3,9], the original system
(1) together with three sets of perturbed equations or
equations in variations (4). The total number of
equations to be solved can be determined by the formula:
n(n+ 1), where n is the number of equations in the
original system. As the initial vectors for the variational
equations, it is necessary to choose a set of vectors )"(8,)78,
which are orthogonal and normalized to unity.
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3. After time T, the trajectory will go to the point — vector
X1, the perturbation vectors )"(8,)78 are renormalized using
the Gram-Schmidt method according to the formulas:

~/
5 ~ ~ 80\ =0 )41
R0 = ﬁ,yl 11— (7, ) R0, 70 = m Here the
1
notation (,) is the scalar product of vectors.

4. Then we continue counting from the point and the
vectors of perturbations. After the next time interval T,
we obtain a new set of perturbation vectors X», y», which
is subjected to orthogonalization and renormalization.

5. Stages 2-4 are repeated M times and in the course of
_ In([I%i1) In(|L:1])
calculations, the sums: S; = > S, = > are
i=1 i=1
calculated, in which the disturbance vectors appear before

renormalization, but after orthogonalization.
6. The maximum Lyapunov exponents are calculated by the

f la: NI = =1,.
ormula: A, /\/ITI
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Remark 2. The Gram-Schmidt orthogonalization procedure is
necessary in order to exclude the dominance of the component
of the maximum Lyapunov exponent at large times when
calculating vectors along the phase trajectory. Otherwise, the
task will be ill-conditioned.

Remark 3. It is important to study the spectrum of the
maximum Lyapunov exponents, which is constructed
depending on the values of the control parameter of interest to
us. The following can be used as control parameters for
system (1): v, a, b, a1, ay.

Therefore, we will investigate the following dependences of the
maximum Lyapunov exponent: Apax (v), Amax (@), Amax (b),
Amax (1), Amax (2) If the spectra of the maximum indicators
have positive values, then there is a chaotic regime, and
negative ones - a regular regime.
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Research results

Of greatest interest is the spectrum of the maximum Lyapunov
exponents Apmax (1), since there are positive values of the

spectrum (Figure 1).
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Figure: Spectrum of maximum Lyapunov exponents Amax (1)
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Research results

In Figure 1 shows that there is a range of variation of the
alpha parameter, at which it takes positive values. The
spectrum was plotted for the following parameter values:
v=05a=01b=1a,=1,t€[0,100],x(0) =

0.2,y (0) = 0.3, with a step 7 = 0.05. Also, Figure 1 shows
the phase trajectories for different values of a;. At a; = 0.5,
the phase trajectory has the shape of a twisting spiral (stable
focus) Figure 1a, for a; = 0.9 the phase trajectory is a limit
cycle (Figure 1b), and for a; = 0.1 the open phase trajectory
has a complex (chaotic shape) (Figure 1c).

Also, the phase trajectories in Figure 1 show that the order of
the fractional derivative a; is responsible for the energy
dissipation in the system, i.e. as the value of alpha decreases,
the limit cycle goes into a stable focus. Similarly, it can be
shown that for order o, these conclusions remain valid.

R.I. Parovikl, Z.R. Rakhmonov2, R.T. Zunnunov®

STUDY OF CHAOTIC AND REGULAR MODES OF THE FRAC



Research results

The spectra of the remaining parameters are shown in Figure
2.

Figure: Spectra of maximum Lyapunov exponents: a-Amax (a);
b-Amax (042) C-Nmax (b), d-Amax (V)
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Research results

We see that all the spectra of the maximum Lyapunov
exponents take negative values, therefore, we have no chaotic
regimes. The spectra were plotted according to the following
parameter values:

Amax(3): v=05, 01 =ay=b=1,t €
[0,100],x(0) =0.2,y (0) = 0.3, a € (0,10] with a
step 7 = 0.1.

/\maX(CKQ)' V—057 t

a =1te
[0,100],x(0) = 0.2, ( 0.3, 26(0 3] with a
step 7 = 0.05.

Amax (b) : v =0.5,a=0. =1

[0,100],x(0) = 0.2,y (0) =0.3, b € (0, 3] with a
stepT—Ol

Amax (V) @a=2, 01 =ap=b=1,t€
[0,100],x(0) =0.2,y(0) = 0.3, v € (0,4] with a
step 7 =0.1
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Conclusion

In this work, we investigated the spectra of the maximum
Lyapunov exponents of the parameters of the Sel’kov
fractional system (1). The Anax(a,) SPectrum has positive
values and, therefore, a chaotic regime is observed. The rest
of the spectra of Lyapunov exponents have negative values,
which indicates regular regimes. A more detailed picture of
dynamic modes can be provided by building a map of dynamic
modes, which will require large computational resources.

We can say that the orders of fractional derivatives introduce
dissipation into the process under consideration (Figure 1). In
Figure 1 it can be seen that with a decrease in the value of the
parameter, the limit cycle is destroyed, and the phase
trajectory becomes open. This confirms the results of studies
of various fractional oscillatory systems [10] - [13].
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