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Turbulence representation

Physical space – processes are mixed, present at every point

Space of scales (wave vectors) – processes are separated
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Shell turbulence models

The wavenumber axis is split into progressively expanding octaves

kn <| k |< kn+1, kn = 2nk0

General view of shell equations

dtXn

dt
=

∑
ij

QnijXiXj − KnXn + fn (1)

Qnij – nonlinear interaction matrix
KnXn ∼ k2

nXn – dissipative term
fn – external forces
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Table 1. Stored quantities

2D 3D
Conserved quantities in hydrodynamics

Энстрофия Спиральность гидродинамическая

Ω =

∫
(rotv)2 dV ∼

∑
n

22nu2
n HV =

∫
(v · rotv) dV ∼

∑
n

2nu2
n

Кинетическая энергия Кинетическая энергия

EV =

∫
v2dV ∼

∑
n

u2
n EV =

∫
v2dV ∼

∑
n

u2
n
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Hydrodynamic system equations

GD turbulence equations in the Boussinesq approximation in
dimensionless form

∂v
∂t

+ (v▽) v = −▽ p + Re−1 △ v, (2)

Re – Reynolds number

Conserved quantities

Kinetic energy E =

∫ (
v2) dV

Enstrophy Ω =

∫
(rotv)2 dV

Hydrodynamic helicity HV =

∫
(v · rotv) dV
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Shell model of hydrodynamic turbulence
Turbulent convection shell model including nonlocal interactions

dtun
dt

=
∑
ij

Snijuiuj − Re−1k2
nun, (3)

Conservation laws

Kinetic energy
dE

dt
= 0 =

d

dt

∑
n

u2
n = 2

∑
n

un
dun
dt

Enstrophy
dΩ

dt
= 0 =

d

dt

∑
n

22nu2
n = 2

∑
n

22nun
dun
dt

Hydrodynamic helicity
dHV

dt
= 0 =

d

dt

∑
n

2n (−1)n u2
n = 2

∑
n

2n (−1)n un
dun
dt
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The resulting equations

The system consists of three families of equations for s[i , j ]

(si,j + sj,i ) + 2i (s−i,j−i + sj−i,−i ) + 2j (si−j,−j + s−j,i−j) = 0,

(si,j + sj,i ) + 23i (s−i,j−i + sj−i,−i ) + 23j (si−j,−j + s−j,i−j) = 0,

(si,j + sj,i ) + (−1)i22i (s−i,j−i + sj−i,−i ) + (−1)j22j (si−j,−j + s−j,i−j) = 0

(4)
The system is also complemented by symmetries of the following form

si,j − sj,i = 0 (5)
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Scheme for calculating equations in a symbolic
package

Рис. 1: Region of existence of equations.
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Requirements for the existence of stationary
solutions with a power-law dependence on the
spatial scale

Stationary solutions

u = u02
p
q , (6)

Additional equations of the form are added to the system∑
i,j

(s[i , j ]) 2−(i+j) p
q , (7)

where p/q – power law degree.
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Interacting shells

Navier-Stokes equation in Fourier space

∂û
∂t

= i

∫∫
R3×R3

S (k, s, q) δ (s + q + k) û (s, t) û (q, t) dsdq−

−νk2û (k, t) + f̂ (k, t)
(8)

Ranges k, s и q
k ∈

(
2n; 2n+i

)
∼ n,

s ∈
(
2n+i ; 2n+i+1) ∼ n + i ,

q ∈
(
2n+j ; 2n+j+1) ∼ n + j ,

(9)

Triangle inequality
2n + 2n+i ⩾ 2n+j ,

2n+i + 2n+j ⩾ 2n,
2n + 2n+j ⩾ 2n+i ,

(10)
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The probabilities of possible interactions of waves
from the nth, (n+i)th, (n+j)th
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Interaction probabilities subject to constraints for
J = 3
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Comparison with the intensities of interactions
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Выводы

• The previously developed technology for constructing cascade models
of computer algebra methods was supplemented and provides the
presence of stationary solutions with any desired exponents. As a result,
entire parametric classes of models are generated in an automated mode.

• The developed technique for identifying specific models in which the
coefficients of nonlinear interactions would be maximum in magnitude to
the probabilities of wave interactions of the corresponding scales.

• In fixed models, a study of power-law solutions for Lyapunov stability
was realized. In the examples considered, these solutions turn out to be
unstable.

• Further development of this technology presupposes the optimization of
computational procedures, since the coordination of the coefficients with
the probabilities is calculated for a very long time. And the agreement
was not very good.
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