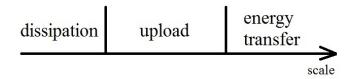
Checking the stability of solutions in shell models using symbolic computation

Feshchenko L.K., Vodinchar G.M.

Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS

v. Paratunka 2021

Turbulence representation



Physical space - processes are mixed, present at every point

Space of scales (wave vectors) - processes are separated

Shell turbulence models

The wavenumber axis is split into progressively expanding octaves

$$k_n < |\mathbf{k}| < k_{n+1}, k_n = 2^n k_0$$

General view of shell equations

$$\frac{d_t X_n}{dt} = \sum_{ij} Q_{nij} X_i X_j - K_n X_n + f_n \tag{1}$$

 Q_{nij} – nonlinear interaction matrix $K_n X_n \sim k_n^2 X_n$ – dissipative term f_n – external forces

Table 1. Stored quantities

Hydrodynamic system equations

GD turbulence equations in the Boussinesq approximation in dimensionless form

$$\frac{\partial \mathsf{v}}{\partial t} + (\mathsf{v} \bigtriangledown) \,\mathsf{v} = - \bigtriangledown \, \mathsf{p} + \mathsf{R} \mathsf{e}^{-1} \,\triangle \,\mathsf{v},\tag{2}$$

 Re – Reynolds number

Conserved quantities

Kinetic energy
$$E = \int (v^2) dV$$

Enstrophy $\Omega = \int (\text{rotv})^2 dV$
Hydrodynamic helicity $H_V = \int (v \cdot \text{rotv}) dV$

Shell model of hydrodynamic turbulence

Turbulent convection shell model including nonlocal interactions

$$\frac{d_t u_n}{dt} = \sum_{ij} S_{nij} u_i u_j - Re^{-1} k_n^2 u_n, \tag{3}$$

Conservation laws

Kinetic energy

$$\frac{dE}{dt} = 0 = \frac{d}{dt} \sum_{n} u_{n}^{2} = 2 \sum_{n} u_{n} \frac{du_{n}}{dt}$$

Enstrophy

$$\frac{d\Omega}{dt} = 0 = \frac{d}{dt} \sum_{n} 2^{2n} u_n^2 = 2 \sum_{n} 2^{2n} u_n \frac{du_n}{dt}$$

Hydrodynamic helicity

$$\frac{dH_V}{dt} = 0 = \frac{d}{dt} \sum_n 2^n (-1)^n u_n^2 = 2 \sum_n 2^n (-1)^n u_n \frac{du_n}{dt}$$

The resulting equations

The system consists of three families of equations for s[i, j]

$$(s_{i,j} + s_{j,i}) + 2^{i} (s_{-i,j-i} + s_{j-i,-i}) + 2^{j} (s_{i-j,-j} + s_{-j,i-j}) = 0,$$

$$(s_{i,j} + s_{j,i}) + 2^{3i} (s_{-i,j-i} + s_{j-i,-i}) + 2^{3j} (s_{i-j,-j} + s_{-j,i-j}) = 0,$$

$$(s_{i,j} + s_{j,i}) + (-1)^{i} 2^{2i} (s_{-i,j-i} + s_{j-i,-i}) + (-1)^{j} 2^{2j} (s_{i-j,-j} + s_{-j,i-j}) = 0$$

(4)

The system is also complemented by symmetries of the following form

$$s_{i,j}-s_{j,i}=0 \tag{5}$$

Scheme for calculating equations in a symbolic package

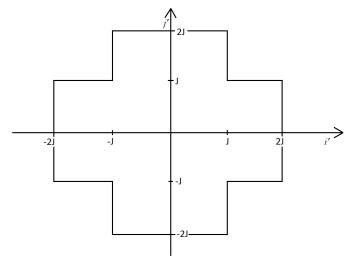


Рис. 1: Region of existence of equations.

Requirements for the existence of stationary solutions with a power-law dependence on the spatial scale

Stationary solutions

$$u = u_0 2^{\frac{p}{q}},\tag{6}$$

Additional equations of the form are added to the system

$$\sum_{i,j} (s[i,j]) 2^{-(i+j)\frac{p}{q}},$$
(7)

where p/q – power law degree.

Interacting shells

Navier-Stokes equation in Fourier space

$$\frac{\partial \widehat{\mathbf{u}}}{\partial t} = i \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} S(\mathbf{k}, \mathbf{s}, \mathbf{q}) \,\delta(\mathbf{s} + \mathbf{q} + \mathbf{k}) \,\widehat{\mathbf{u}}(\mathbf{s}, t) \,\widehat{\mathbf{u}}(\mathbf{q}, t) \,d\mathbf{s}d\mathbf{q} - \nu \mathbf{k}^{2} \,\widehat{\mathbf{u}}(\mathbf{k}, t) + \widehat{\mathbf{f}}(\mathbf{k}, t)$$
(8)

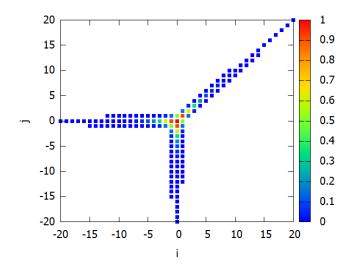
Ranges k, s и q

$$\begin{split} & \mathsf{k} \in (2^{n}; 2^{n+i}) \sim n, \\ & \mathsf{s} \in (2^{n+i}; 2^{n+i+1}) \sim n+i, \\ & \mathsf{q} \in (2^{n+j}; 2^{n+j+1}) \sim n+j, \end{split}$$

Triangle inequality

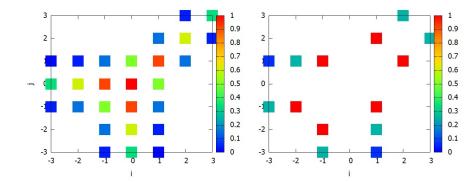
$$2^{n} + 2^{n+i} \ge 2^{n+j}, 2^{n+i} + 2^{n+j} \ge 2^{n}, 2^{n} + 2^{n+j} \ge 2^{n+i},$$
(10)

The probabilities of possible interactions of waves from the nth, (n+i)th, (n+j)th

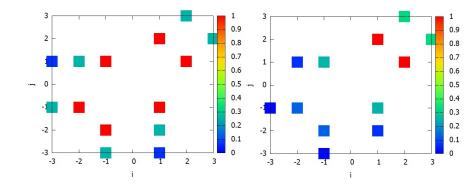


11

Interaction probabilities subject to constraints for $\mathsf{J}=\mathsf{3}$



Comparison with the intensities of interactions



Выводы

• The previously developed technology for constructing cascade models of computer algebra methods was supplemented and provides the presence of stationary solutions with any desired exponents. As a result, entire parametric classes of models are generated in an automated mode.

• The developed technique for identifying specific models in which the coefficients of nonlinear interactions would be maximum in magnitude to the probabilities of wave interactions of the corresponding scales.

• In fixed models, a study of power-law solutions for Lyapunov stability was realized. In the examples considered, these solutions turn out to be unstable.

• Further development of this technology presupposes the optimization of computational procedures, since the coordination of the coefficients with the probabilities is calculated for a very long time. And the agreement was not very good.